A Novel Framework for Smart Cyber defence: A Deep-Dive into Deep Learning Attacks and defences

نویسندگان

چکیده

Deep learning techniques have been widely adopted for cyber defence applications such as malware detection and anomaly detection. The ever-changing nature of threats has made a constantly evolving field. Smart manufacturing is critical to the broader thrust towards Industry 4.0 5.0. Developing advanced technologies in smart requires enabling paradigm shift manufacturing, while cyber-attacks significantly threaten manufacturing. For example, attack (e.g., backdoor) occurs during model’s training process. Cyber affects models impacts resultant output be misled. Therefore, this paper proposes novel comprehensive framework deep security. collectively incorporates threat model, data, model proposed encompasses multiple layers, including privacy protection data models. In addition statistical intelligent maintaining confidentiality, covers structural perspective, i.e., policies procedures securing data. study then offers different methods make robust against attacks coupled with model. Along security, helps defend systems by identifying potential or actual vulnerabilities putting countermeasures control place. Moreover, based on our analysis, provides taxonomy backdoor defences. addition, qualitative comparison existing Finally, highlights future directions defences possible way further research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep learning-based CAD systems for mammography: A review article

Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

A Probabilistic Framework for Deep Learning

We develop a probabilistic framework for deep learning based on the Deep Rendering Mixture Model (DRMM), a new generative probabilistic model that explicitly capture variations in data due to latent task nuisance variables. We demonstrate that max-sum inference in the DRMM yields an algorithm that exactly reproduces the operations in deep convolutional neural networks (DCNs), providing a first ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3306333